Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808306

RESUMO

This work analyzes the effect of the presence of 5 wt.% of solid sodium salts (Na2SO4, Na2CO3, and Na2SiO3) on calcium sulfoaluminate cement (CSA) hydration, addresses hydration kinetics; 2-, 28-, and 90-d mechanical strength, and reaction product microstructure (with X-ray diffraction (XRD), and Fourier transform infrared spectroscopy, (FTIR). The findings show that the anions affect primarily the reactions involved. Ettringite and AH3, are the majority hydration products, while monosulfates are absent in all of the samples. All three salts hasten CSA hydration and raise the amount of ettringite formed. Na2SO4 induces cracking in the ≥28-d pastes due to post-hardening gypsum and ettringite formation from the excess SO42- present. Anhydrite dissolves more rapidly in the presence of Na2CO3, prompting carbonation. Na2SiO3 raises compressive strength and exhibits strätlingite as one of its reaction products.

2.
Materials (Basel) ; 14(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396353

RESUMO

The addition of natural fibers used as reinforcement has great appeal in the construction materials industry since natural fibers are cheaper, biodegradable, and easily available. In this work, we analyzed the feasibility of using the fibers of piassava, tucum palm, razor grass, and jute from the Amazon rainforest as reinforcement in mortars, exploiting the mechanical properties of compressive and flexural strength of samples with 1.5%, 3.0%, and 4.5% mass addition of the composite binder (50% Portland cement + 40% metakaolin + 10% fly ash). The mortars were reinforced with untreated (natural) and treated (hot water treatment, hornification, 8% NaOH solution, and hybridization) fibers, submitted to two types of curing (submerged in water, and inflated with CO2 in a pressurized autoclave) for 28 days. Mortars without fibers were used as a reference. For the durability study, the samples were submitted to 20 drying/wetting cycles. The fibers improved the flexural strength of the mortars and prevented the abrupt rupture of the samples, in contrast to the fragile behavior of the reference samples. The autoclave cure increased the compressive strength of the piassava and tucum palm samples with 4.5% of fibers.

3.
Materials (Basel) ; 11(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261599

RESUMO

This study investigated the reactivity properties of self-leveling hybrid alkali-activated cements, such as ordinary Portland cement (OPC) and its residual precursors, coal bottom ash (BA), and rice husk ash (RHA). Due to the relatively low reactivity of BA, binary mixes were produced with OPC using contents of 2.5⁻30% in the treated BA samples. Furthermore, ternary mixes were prepared in proportions of 25%, 50%, and 75% with RHA as a replacement material for the OPC (mix with 90%:10% BA:OPC). For all of the mixes the spreading behaviors were fixed to obtain a self-levelling mortar, and dimensional changes, such as curling and shrinkage, were performed. Mortars with 30% OPC reached a compressive strength of 33.5 MPa and flexural strength of 7.53 MPa. A scanning electron microscope (SEM) and X-ray powder diffraction (XRD) were used to indicate the formation of N-A-S-H and a (N,C)-A-S-H gel, similar to the gel with trace of calcium. The best performance was achieved when the binary mix produced 10% OPC. A hybrid mortar of OPS-BA presented 10 times lower susceptibility to curling than an OPC mortar. The results showed that both ashes reduced the shrinkage and curling phenomena.

4.
Materials (Basel) ; 10(8)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28817091

RESUMO

An experimental study was conducted to investigate the potential use of phosphogypsum (PG) to produce self-leveling underlayments. The study was designed in two stages. Initially a phosphoanhydrite (PA) was produced by heating phosphogypsum at temperatures of 350 °C, 450 °C, 550 °C, and 650 °C. Two periods of heating were applied (2 and 4 h). The formation of anhydrite was determined by thermogravimetric analysis (DTA-TG) and confirmed by X-ray diffraction (XRD). The results show that anhydrite II was obtained at temperatures above 450 °C, and at higher calcination temperatures the PA solubility was lower. In the second stage of this research, the PA was used in self-leveling underlayments as the main binder in the ternary system comprised of calcium sulfate, calcium aluminate cement, and Portland cement. Self-leveling mortar screeds produced using PA (550 °C/4 h) and PA (650 °C/4 h) showed the best performance in terms of mechanical strength and no degradation was observed after immersion and immersion-drying tests. The formation of ettringite, identified by scanning electron microscopy (SEM), may have contributed to these results. Morphological changes were studied using the scanning electron microscopy (SEM) technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...